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Abstract: Concealed objects detection in terahertz imaging is an urgent need for public security and
counter-terrorism. So far, there is no public terahertz imaging dataset for the evaluation of objects
detection algorithms. This paper provides a public dataset for evaluating multi-object detection
algorithms in active terahertz imaging. Due to high sample similarity and poor imaging quality,
object detection on this dataset is much more difficult than on those commonly used public object
detection datasets in the computer vision field. Since the traditional hard example mining approach
is designed based on the two-stage detector and cannot be directly applied to the one-stage detector,
this paper designs an image-based Hard Example Mining (HEM) scheme based on RetinaNet. Several
state-of-the-art detectors, including YOLOv3, YOLOv4, FRCN-OHEM, and RetinaNet, are evaluated
on this dataset. Experimental results show that the RetinaNet achieves the best mAP and HEM
further enhances the performance of the model. The parameters affecting the detection metrics of
individual images are summarized and analyzed in the experiments.

Keywords: terahertz imaging; public dataset; concealed multi-object detection; hard example mining

1. Introduction

Detecting concealed objects underneath clothing is a critical task in public security
inspection, while the traditional manual check is often criticized with inefficiency, invasion
of privacy, and high rate of missed detection. Terahertz waves, which are between mi-
crowave and infrared, are electromagnetic waves with frequencies ranging from 0.1 to
10 terahertz. Due to its high penetration, low energy, coherence, and fingerprint spectrum
of most substances in the terahertz band, terahertz imaging technology [1–4] provides a
non-contact and non-destructive way to discover objects concealed underneath clothing
with no harm to health.

According to the presence or absence of terahertz source irradiation, there are two
categories of terahertz imaging systems: passive [1,5,6] and active [2,3,7]. The passive
imaging system needs no terahertz irradiation source but relies on the terahertz radiation
energy of the measured object itself to reconstruct an image. The active imaging system
utilizes a terahertz source to irradiate the object and uses the reflected or transmitted signal
to reconstruct the image. Due to the weak radiation of the human body, passive imaging
requires a sensitive receptor and has difficulty avoiding environmental disturbance. In an
active imaging system, the signal frequency linearity, phase noise, transmitter power,
receiver noise factor, and other indicators play significant roles in the imaging quality.
Therefore, the difficult acquisition and low quality of terahertz images remain a technical
bottleneck for object detection.

Previous work focused more on the task of segmenting terahertz images and yielded
many results. However, in many visual tasks, especially in a security check system, the de-
sired output should include localization, i.e., a class label is supposed to be assigned to each
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pixel. Traditional object recognition often follows the detection-first regime. Unfortunately,
the imaging quality mentioned above leads to poor detection. As far as we know, there is no
public terahertz dataset for multi-target detection. For both of these reasons, multi-object
detection techniques for terahertz images are not well developed. Our work focuses on
this problem in the hope of advancing the task.

In this paper, we provide an active terahertz imaging dataset for multi-object detection.
The state-of-the-art deep-learning-based object detectors YOLOv3 [8], YOLOv4 [9], FRCN-
OHEM [10] and RetinaNet [11] are evaluated on the dataset. Due to the high sample
similarity, poor imaging quality, and small objects of terahertz images, general detectors do
not perform well on this dataset. In order to detect smaller objects, we extended RetinaNet
by embedding low-level features. Aiming at solving the problem of unbalanced training
samples, we proposed a new Hard Example Mining (HEM) approach for the multi-object
detection of terahertz images. Focal loss [11] and HEM are discussed and tested in this
paper. We compare in detail the parameters that affect the image detection metrics and
give a method for selecting the optimal threshold.

The contributions of this paper are three-fold:

• Provide an active terahertz imaging dataset for concealed multi-object detection.
To our knowledge, there is no public dataset in terahertz imaging to evaluate multi-
object detection algorithm. We provide an active terahertz imaging dataset for multi-
object detection with 3157 image samples with 1347 concealed objects.

• An image-based Hard Example Mining scheme based on RetinaNet is designed, and
four state-of-the-art object detectors are evaluated on this dataset. The experiment
indicates that HEM further improves the performance of the RetinaNet.

• The experiment indicates that hiding objects in different parts of the human body
affect detection accuracy. The parameters affecting the single-image detection metrics
are summarized and analyzed in the experiments.

The remainder of this paper is organized as follows: we discuss the related work
in Section 2. The details of our proposed terahertz dataset are described in Section 3.
We formulate the problem and describe the proposed method in detail in Section 4. The ex-
perimental results are presented and discussed in Section 5, and the conclusions and future
work are presented in Section 6.

2. Related Work
2.1. Object Detection in Terahertz Image

Due to poor imaging quality and immature level of object detection technology, earlier
work paid more attention to object segmentation in terahertz images. Shen [6] proposed
a multi-level threshold segmentation algorithm to model radiation temperature using a
Gaussian mixture model, which used an anisotropic diffusion algorithm to remove noise.
Yeom [5] also used the Mixed Gaussian model to estimate object boundary. Due to the
complexity of terahertz imaging, the above methods can only obtain rough segmentation
results. In our previous work [7], we proposed a deep-learning-based method—Mask
Conditional Generative Adversarial Nets (Mask-CGANs)—to segment objects in a terahertz
image of poor quality.

Convolutional neural networks have excelled in a wide range of tasks, and they
have been applied to terahertz image object detection. Yao [12] used a sliding window to
slide on the terahertz image to obtain the sub-images and obtained the probability of the
existence of the object in each sub-image. Then, the probabilities of each sub-image were
accumulated to obtain the probability map of the whole image. Finally, the location and
the bounding box of the object were obtained by threshold filtering. Wang [13] improved
on Yao’s work by using a two-step search method instead of an exhaustive search to reduce
the computational complexity. All the methods detected a single hidden object but ignored
the situation of multiple objects in practical application.

In addition to the above approaches specifically designed for terahertz image object
detection, M. Kowalski [14,15] verified the performance of three universal object detectors
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(i.e., SSD [16], R-FCN [17], and YOLOv3 [8]) on terahertz image dataset. It was demon-
strated that SSD and YOLOv3 have faster detection speeds, while R-FCN has a higher
detection rate. Zhang [18] proposed an improved Faster R-CNN [19] to detect terahertz im-
ages. The input image needs to pass through the Faster R-CNN and human body threshold
segmentation branch to detect the object and the human body.

While there has been research work dedicated to deep learning terahertz image
object detection, the lack of publicly available terahertz datasets due to the sensitive
nature of terahertz imaging technology and privacy protection has limited research in this
direction. We hope that our proposed terahertz multi-object detection dataset facilitates the
development of this research.

2.2. Hard Example Mining in Object Detection

There is an imbalance problem in object detection, as the number of negative sam-
ples in the training dataset is usually much larger than the number of positive samples.
During the training process of the model aiming at minimizing the loss function, the large
number of negative samples often causes excessive weighting, leading to the degradation
of detection accuracy.

In general, the detector has to constrain the loss of positive and negative samples in
order to balance the positive and negative samples. In the two-stage detector, the number
of negative samples is generally reduced by downsampling the negative samples RoI. In
the one-stage detector, the weights of positive and negative samples are generally adjusted
directly on the loss function.

Besides the above general methods of balancing positive and negative samples, there
are also some methods that specialize in mining hard samples. OHEM [10] is a classic
method in hard example mining. OHEM emphasizes the mining of hard samples and does
not distinguish between hard positive and hard negative samples. In addition, it selects
samples each time as those with large losses without setting the proportion of positive
and negative samples. Since OHEM selects hard samples based on the total loss, and the
ratio of classification loss and regression loss varies during the training of the network,
this loss is not completely reliable. To address the above problems, S-OHEM [20] pro-
poses a distribution sampling method according to the losses of different training stages.
This method divides the losses into four stages, and the scaling parameters of classification
loss and regression loss are different for each stage. However, the hard example mining
method described above cannot be directly applied to a one-stage target detector; therefore,
we have proposed a Hard Example Mining method applicable to RetinaNet.

3. Active Terahertz Object Detection Dataset

Previous work on terahertz images has been less extensive, and most experiments
have been conducted on their own datasets. A dataset containing 1440 terahertz images for
segmentation was proposed in our previous work [7]. These samples are sampled from
four subjects (360 for each one including fore and back views) containing weapons such as
guns, knives, or nothing. To the best of our knowledge, no terahertz dataset for multiple
target detection has been proposed in previous work.

A terahertz security inspection gate developed by Terahertz Research Centre, China
Academy of Engineering Physics, was used for dataset acquisition. This imaging system
adopts array scanning mode, works at 140 GHz, with imaging resolution of 5 mm by
5 mm. When acquiring data, human models stand with hidden objects in their clothing.
This dataset is diversified—objects are hidden in different positions of human body, and
the number of hidden objects in an image is from 0 to 3. There are four male and six
female models with an equal amount of participation during image acquisition. Images
acquired in each imaging include the front and back of the model. Eleven classes of objects
and their corresponding quantity of object are labeled as shown in Table 1. Note that the
Class Unknown (UN) refers to those objects that do not fall into the 10 clear classes. We
annotated the bounding boxes and class labels of the acquired terahertz dataset in Pascal
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VOC format [21]. Figure 1 shows some visual annotations of each category, and Figure 2
shows some visual annotations of diversification.

UNCK WB KC CP CL LWMDSSKKGA

Figure 1. Visualization display of some images with a single object in our terahertz object detection
dataset. On the top of the figure are the corresponding class’ abbreviation.

LegThree None Arm Chest Stomach WaistTwoSingleBackFront

Figure 2. Visualization display of diversified data of terahertz object detection dataset. On the top of
the figure are the data characteristics.

Table 1. Object classes of terahertz object detection dataset.

Class GA KK SS MD CK WB KC CP CL LW UN

Item Gun Kitchen
Knife Scissors Metal

Dagger
Ceramic

Knife
Water
Bottle

Key
Chain

Cell
Phone

Cigarette
Lighter

Leather
Wallet Unknown

Qty. 116 100 96 64 129 107 78 129 163 78 289
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The statistical result of the terahertz dataset is shown in Table 2. Figure 3 shows the
statistical result of the object size and number distribution in the dataset. Green strips
in the figure indicate average object size, and blue circles are the quantity for each class.
The dataset is available online. Link: https://github.com/LingLIx/THz_Dataset (accessed
on 29 September 2021).

Table 2. Detail statistics of terahertz object detection dataset.

Item Detail

Number of images 3157
Image size and format 335 × 880 p.x. JPEG
Imaging resolution 5 × 5 mm
Models 4 males, 6 females
Number of categories 11
Objects per image 0, 1, 2, 3
Maximum object size 13,390 p.x.
Average object size 3222 p.x.
Minimum object size 390 p.x.
Testing set 316 images
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Figure 3. Average size of bounding box and quantity for each class in terahertz object detec-
tion dataset.

4. Methodology

Object detection aims at inferring the location, size, and class label of the object on an
image. In this section, we discuss the detectors we used for evaluation in the dataset. We
also introduced an HEM strategy to enhance RetinaNet to detect smaller objects. Details of
the methods are described as follows:

4.1. The Basic Detector

RetinaNet [11] is a one-stage object detection algorithm, which directly regresses and
classifies the bounding box. Its network structure is shown in Figure 4 except for the
red part. In this network, the Resnet-50 structure [22] is selected as the feature extraction
network (Blue part). In order to make the model have better multi-scale detection capability,
the feature pyramid structure of high-level and low-level feature fusion was adopted
(Green part). The final multi-level feature map is followed by the sub-network of object
classification and bounding box regression (Purple part).

https://github.com/LingLIx/THz_Dataset
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Figure 4. Network structure of modified RetinaNet. C1–C5 represent the resnet-50 feature extraction
structure, and P2 to P7 represent the feature pyramid structure. Each layer of feature pyramid is
followed by a sub-network.

Deep residual networks use blocks of residuals to connect the inputs and outputs
of adjacent layers, improving the “gradient disappearance” and “gradient explosion”
problems in model training. The feature pyramid combines high-level and low-level
features to improve the detection performance of the model. The input features are obtained
from each feature pyramid level, and then the convolution layer decoding features with
four convolution kernels of 3 × 3 and output channels of 256 are used. The difference lies
in the final output layer. The output of the classification sub-network converts the output
channel to be the same as the number of object categories (K) multiplied by the number of
detection anchors (A), i.e., the number of output channels is K × A. Finally, the prediction
results of each channel are binarized through the sigmoid function to determine whether it
is the corresponding category of the channel. The output of the detection box regression
sub-network passes through the linear transformation converts the output to a vector of
4 × A. Classification sub-network does not share parameters with box regression sub-
network. Sub-networks share parameters among different levels of the feature pyramid.

Object detection problem is a typical class imbalance problem. Take the two-class
object detection as an example: the number of negative samples (i.e., scene background)
needed for training is often much larger than the number of positive samples (i.e., objects).
However, in the model training process to minimize the loss function, the introduction
of a large number of negative class samples often causes bias, resulting in the decline of
detection accuracy.

Focal Loss (FL) are designed for the unbalanced sample problem in RetinaNet. FL is
based on the binary cross-entropy function as follows:

CE(p, y) =
{

− log(p) y = 1
− log(1− p) y = −1

(1)

In Formula (1), p represents the probability of prediction, with a positive label y = 1
and negative label y = −1. Pt is defined as follows:

Pt =

{
p y = 1

1− p y = −1
(2)

We can obtain CE(p, y) = CE(Pt) = −log(Pt). In Formula (2), p represents the
probability of model prediction, with positive label y = 1 and negative label y = −1.
The larger the prediction value of the positive class is, the better the prediction value
of the negative class is, which is equivalent to optimizing the Pt of all samples to the
maximum. The binary classification cross entropy can calculate the classification error
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well, but the problem of sample imbalance still exists; therefore, the balanced cross-entropy
is introduced.

CE(Pt) = −α log(Pt) (3)

In Formula (3), α is the parameter matrix of positive and negative samples. For this
case, the number of negative samples is larger than that of positive ones, for positive
samples, α = 1, and for negative samples, α = 0.25. Therefore, the impact of positive
samples on model loss function is larger than that of negative samples. On this basis,
an adjustment factor (1− Pt)γ is added, and focal loss is finally obtained as follows:

FL(Pt) = −α(1− Pt)
γ log(Pt) (4)

In Formula (4), γ is the parameter regulating the contribution of hard and easy exam-
ples to the loss function. For the hard example, it is difficult to infer a high confidence score,
and it obtains a lower Pt. The smaller Pt is, the larger (1− Pt)γ is; thus, a relatively large
loss is generated. Similarly, for a simple example, it could obtain a higher Pt. The larger Pt
is, the smaller (1− Pt)γ is, and the focus of model training is on the hard examples.

4.2. Hard Example Mining Approach

RetinaNet is a one-stage object detection algorithm, which directly regresses and
classifies the bounding box of the object with fast detection speed. In order to deal with
the sample imbalance problem, FL is used as the classification loss function in training. FL
mainly solves the problem of positive and negative sample imbalance and also deals with
the problem of hard examples. However, there are a small number of hard examples in the
terahertz image dataset for which the effect of FL is limited.

OHEM provides a method to specifically mine hard examples for training. It is de-
signed for a two-stage object detector and cannot be used directly for RetinaNet; therefore,
we modified the process. We first train the basic detector, then used the detector to compute
loss to select hard examples, and used these hard examples to reinforce training the detector.
HEM is implemented by converting the selection hard RoI to selection hard examples.
The HEM training process is shown in Figure 5, where DataB denotes the base terahertz
image sample set, DataT denotes the training sample set, and DataH denotes the hard
example sample set.

Figure 5. Training process of RetinaNet and Focal Loss combined with HEM.

The training process is mainly divided into two stages. The first stage is the training
of the basic detector, and the second stage is the hard example mining and the intensive
training of the model. In the first stage, the base terahertz image sample set is randomly
disrupted and input to RetinaNet combined with focal loss to train the network directly
until convergence. Once the basic detector training is complete, move on to the second
stage. First, all training samples are passed through RetinaNet to calculate the loss, and then
the top 10% samples with large loss are selected as hard examples according to the order
of loss from largest to smallest. Finally, the hard example DataH and the base terahertz
sample DataB are input into the training data generator, which is randomly disrupted to
generate new training data DataT and continue to train the detector. The pseudo-code for
the whole process is shown in Algorithm 1.
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Algorithm 1: Hard example mining process.
Input: Model = RetinaNet: Detector

DataB: Basic terahertz images
DataH = None: Hard examples
DataT = DataB: Training examples
TopK = 10%: Percentage of hard example
Loop = 20: Training loops for hard examples

1 /* Stage one */
2 Initialize Use DataT to train Model until convergence
3 /* Stage two */
4 while Loss reduction do
5 Loss = Model(DataT)
6 Loss = Sort(Loss)
7 HardIndex = Loss[0 : TopK ∗ len(Loss)].Index()
8 DataH = DataT [HardIndex]
9 DataT = DataB + DataH

10 for i ∈ [0, Loop) do
11 Model = Model.Train(DataT)
12 end
13 end

In the second stage, there are two methods of adding hard examples to the training
data generator. The first is to ensure the training set size is constant and add hard examples
after removing the easy classification samples (namely HEME’). The second is to directly
add hard examples to expand the training set (namely HEMA’). The following experi-
ments show that using the second method to add difficult examples to the training set is
more effective.

5. Results and Discussion
5.1. Single Class Comparison Experiments

The experiments first compared the effect of the percentage of hard examples and
the number of iterations in the HEM process on the detection performance of RetinaNet.
ResNet-50 is used as the feature extraction network, and focal loss is used as the classifi-
cation loss function. We treat all objects as a single class to verify the performance of the
method and use AP as an evaluation criterion.

The experimental results are shown in Table 3. The percentages of hard examples were
selected as 5%, 10%, and 20% for comparison, where 0% indicates the performance of the
trained base model when no HEM is performed. The number of iterations of training data
after each HEM is selected as 10, 20 and 30 times for comparison. In terms of the percentage
of hard examples, it is not the case that more hard examples being selected is better, and too
few selections do not achieve the meaning of HEM. In a limited dataset, the proportion of
hard examples is small, and there is no clear threshold for the samples selected according
to the loss ranking. According to the experimental results, in the terahertz image object
detection dataset, a better result can be achieved when the percentage of hard examples
is 10%. In terms of the number of iterations, too many and too few iterations do not give
the best performance for the model. According to the experimental results, the number of
iterations (20) achieve the best results on different percentages of hard examples. Selecting
hard examples to enhance the training model is a process of model enhancement and model
overfitting equilibrium, and the number of iterations changes according to the number of
new samples.
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Table 3. The comparative experimental results of HEM with different parameters for single-class
detection. Among them, the results with underline are the worst, and the results with bold are
the best.

Hard Example Ratio (%)\Training Loop 10 20 30

0 68.01 68.01 68.01
5 69.55 69.57 69.49

10 69.58 69.63 69.59
20 69.56 69.60 69.55

Overall, hard example mining works effectively on the single-class terahertz image
object detection dataset, improving the AP of the model by 1.6% on top of the basic detector.

5.2. Multi-Class Comparison Experiments

The experiments also compare the multi-class detection performance of the base
RetinaNet and RetinaNet using HEM. Three general detectors, YOLOv3, YOLOv4, and
FRCN-OHEM are added as contrast. For RetinaNet, we use ResNet-50 as the feature
extraction network and focal loss as the classification loss function. The evaluation criteria
used are mAP and AP. The percentage of hard examples used in the HEM process is 10%,
and the number of iterations is 20.

The experimental results are shown in Table 4. We can see that the second method
achieves better detection performance, and both are better than the results without adding HEM.

Table 4. The results of detection AP for each category in HEM experiments. The results with
underline are the worst. and the results with bold are the best.

Method GA KK SS MD CK WB KC CP CL LW UN mAP

YOLOv3 67.15 81.69 45.56 0.0 16.39 11.29 25.00 60.74 18.57 75.43 30.35 39.29
YOLOv4 58.05 82.72 67.27 0.0 12.50 34.72 8.33 61.62 54.79 61.02 14.23 41.39
FRCN-OHEM 83.39 81.69 66.67 0.0 16.39 31.56 37.38 63.21 18.57 44.23 22.38 42.32
RetinaNet 88.07 100.0 65.24 0.0 22.92 52.38 80.56 69.00 45.28 49.44 22.86 54.16
RetinaNet+HEME 87.67 100.0 65.00 0.0 25.01 53.12 80.56 68.48 47.00 49.44 22.23 54.41
RetinaNet+HEMA 88.07 100.0 65.24 0.0 25.01 53.12 80.56 69.00 47.00 49.44 22.86 54.57

Obviously, among the basic detectors YOLOv3, YOLOv4, FRCN-OHEM and RetinaNet,
RetinaNet has the best mAP. Comparing Experiment “RetinaNet” and “RetinaNet + HEME”,
the HEM technique improves the accuracy of the model in detecting the “CL, CK” class.
However, due to the deletion of some easy samples in the HEM process in Experiment
“RetinaNet + HEME”, the accuracy of the model for “GA, CP” decreased. In Experiment
“RetinaNet + HEMA”, the detection accuracy of all categories is no lower than that of
Experiment “RetinaNet + HEME”, and the detection accuracy of “CL, CK, WB” category is
improved. These experiments show that our proposed HEM approach can improve the
detection accuracy of hard examples in terahertz images, and the training set construction
approach of adding hard examples directly to the training set has better results.

To compare the performance of different models more intuitively, we plot the results
of Table 4 as a radar map with additional information on the pixel size of the bounding box
for each class, as shown in Figure 6. Overall, the detection AP of each model is positively
correlated with the pixel bounding box size of the target. The larger the bounding box the
higher the detection AP of the model, and vice versa.
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Figure 6. Visual radar map of each category of AP in Table 4. The radius of the radar is the AP for
each category, the individual fold lines represent the model as shown in the legend on the right,
the categories represented by each orientation are represented at the outermost part of the radar,
and the shaded area in the middle of the radar represents the normalized scale of the average pixel
size of the bounding box for each category.

As shown in Table 4, the detection accuracy of all detectors for “MD” is 0. This is
because the number of the object in test set is very small, and “MD” is similar to “CK” in
appearance. The difference between the two categories is very small, which not only leads
to a detection rate of 0 for “MD” but also seriously affects the detection rate of “CK”.

Figure 7 shows the general examples and the hard examples selected by HEM in
the active terahertz dataset. In general examples, The bounding box size of the targets is
larger, and the shape and details of the targets are clear. The most obvious features of the
hard examples are the small targets (e.g., “CL” class), misclassified targets (e.g., “CK”),
and blurred targets or images.

Figure 7. Example of general examples (first row) and hard examples selected by HEM (second row).

5.3. Position Analysis of Object in Terahertz Imaging

In single imaging, the hidden objects may be placed perpendicular to the imaging
plane. These objects are difficult to detect compared to objects parallel to the imaging plane.
As shown in Table 5, we calculate the recall rate of objects in different positions of the
human body. The last two columns indicate the imaging direction of the object.
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Table 5. Recall rate of detection in different parts of the human body. The detection results of 147
objects in the test set are counted. The results with underline are the worst, and the results with bold
are the best.

Model On Arms (8) On Body (69) On Legs (70) Parallel (95) Perpendicular (52)

YOLOv4 0.2500 0.4783 0.6143 0.5789 0.4423
FRCN-OHEM 0.375 0.4638 0.5000 0.5158 0.4038
RetinaNet 0.5000 0.4928 0.7000 0.6105 0.5577

From Table 5, we can see that RetinaNet has the highest recall rate no matter where
the object is hidden. Generally, the items hidden on the arm are smaller, while the objects
on the body and legs are larger, the recall rate of objects on the arms is relatively low.
Because of the imaging diversity of the human body, the recall is also low when objects
are on the body, compared with on legs. For objects parallel to and perpendicular to the
imaging plane, all detectors have a better recall rate on the former. Therefore, it is necessary
to use multi-view detection in the practical application, which can effectively detect items
placed perpendicular to the imaging plane.

5.4. Image-Level Detection Performance

In a practical terahertz security inspection system, detection rate and false-alarm rate
are two important indicators of the system performance. When calculating the detection
rate and false-alarm rate for a single image, it is also necessary to determine whether the
detection is correct. There are three important thresholds involved in the whole testing
process, namely the Non-Maximum Suppression (NMS) threshold, the confidence level
(SCO) threshold, and the IoU threshold.

In the following experiments, the metrics are first calculated for the usual thresholds
(NMS 0.5, IoU 0.5, and SCO 0.5). The effect of each threshold and the method for selecting
the optimal threshold are then discussed in detail.

5.4.1. The General Test Result

For an image, we first define the object-level detection metric as follows:

• ObjDetection: the detector marks the location of the hidden object, and the IoU
between the detection bounding box and the ground truth bounding box is more
than 50%.

• ObjFalseAlarm: the detector marks the location of the hidden object, but there are
no objects.

Then we define image-level detection indicators as follows:

• ImgDetection: if some or all of the hidden objects in a terahertz image are ObjDetection.
• ImgFalseAlarm: if there is any ObjFalseAlarm in a terahertz image.

Finally, we obtain a image-level Detection Rate (DR) and False-Alarm Rate (FAR)
as follows:

DR =
1
n

n

∑
i=1

ImgDetection(i) (5)

FAR =
1
n

n

∑
i=1

ImgFalseAlarm(i) (6)

where i is the image index and n is the total quantity of images.
The image-level detection result is shown in Table 6. The Detection Rate (DR) of

RetinaNet is over 90% when its False-Alarm Rate (FAR) is 1.27%. Although YOLOv4 has
the lowest FAR, its DR is lower than RetinaNet. FRCN-OHEM has the worst performance.
RetinaNet has the best performance in detection of terahertz images, which makes it
suitable for practical terahertz security inspection.
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Table 6. Image-level detection result. The detection results of 316 images in the test set are counted.
Red is the best, and blue is the worst. The results with underline are the worst, and the results with
bold are the best.

Method DR (%) FAR (%)

YOLOv4 84.49 0.63
FRCN-OHEM 88.86 18.99
RetinaNet 91.46 1.27

5.4.2. Balance of Detection Rate and False-Alarm Rate

NMS Threshold: Generally, anchor-based detectors output a large number of de-
tection bounding boxes with confidence, and multiple detections may exist for a single
object. These redundant boxes are generally removed by NMS operations to retain the best
detection results. The NMS process is as follows:

(1) Ranking of all candidate bounding boxes according to their confidence scores;
(2) Select the bounding box with the highest confidence score to add to the final output

list and remove it from the list of candidate bounding boxes;
(3) Calculate the IoU of the bounding box with the highest confidence score against

the other candidate boxes and remove the bounding boxes with an IoU greater
than a threshold;

(4) Repeat the above (2)∼(3) process until the list of bounding boxes is empty.

Too many retention boxes may result in too many false positives, while too few
retention boxes may result in too many missed detections. The number of retention boxes is
positively related to the NMS threshold; therefore, there is a need to balance this threshold.

Subplot a,e of Figure 8 show the curves of detection rate and false-alarm rate corre-
sponding to the change of NMS threshold from 0.1∼0.9 curve, and subplot Figure 8f shows
the curve of the lowest false-alarm rate and its corresponding detection rate with NMS
threshold for each subplot. At low NMS thresholds, the increase in the NMS threshold
mainly affects the false-alarm rate of the model. At high NMS thresholds, the NMS thresh-
old has a serious impact on both the false-alarm rate and the detection rate. In particular,
the detection rate was essentially constant for NMS thresholds below 0.5.

Confidence threshold: After the detection results are subjected to NMS operation,
most of the overlapping detection boxes will be removed, but some unreasonable detection
boxes are still left behind. Each detection box has a confidence score, a value between 0∼1,
indicating the possibility that a target is surrounded by a box. As the confidence threshold
gets higher, object recall decreases, but detection accuracy increases. Therefore, we need
to set a suitable threshold so that the detection results are balanced between recall and
detection rate.

IoU threshold: The IoU threshold is a key threshold when calculating the performance
metrics for a single image. To distinguish between correct detection and incorrect detection,
the intersection over union ratio is calculated between the detection result and the ground
truth of the test image. A higher IoU threshold will result in a lower detection rate of the
object, but a higher probability of the object being detected correctly. This threshold also
needs to be balanced.

Comprehensive Analysis: In order to analyze the variation of single-image detection
rate and false-alarm rate with confidence threshold and IoU threshold, the NMS threshold
should be determined first. According to Figure 8f, when the NMS threshold is 0.1, the false-
alarm rate is the lowest and the detection rate is the highest, which is the most desirable
outcome in all cases. Therefore, we selected the experimental results when the NMS
threshold is 0.1.
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(a) NMS 0.1 (b) NMS 0.5

(c) NMS 0.7 (d) NMS 0.8

(e) NMS 0.9 (f) The best index changing with NMS

Figure 8. The curve of detection rate and false alarm rate with NMS, IoU, and confidence score.
The last subplot represents the curve of the lowest false-alarm rate and its corresponding detection
rate variation with the NMS threshold for the previous subplots.

According to the previous definition of single-image detection rate and false-alarm
rate, we can find that the false-alarm rate is not only related to error detection but also
related to missed detection. Therefore, as shown in Figure 9a, the curve change of the
false-alarm rate is not unidirectional. In the case of a high IoU threshold, the false-alarm
rate is high and almost constant with an increasing confidence score.

As the IoU threshold decreases, the false-alarm rate decreases as the confidence level
increases. When the IoU threshold is very low, the false-alarm rate first has a significant
decrease with the confidence level, which is the process of reducing error detections.

The curves of single-image detection rate and false-alarm rate with IoU are shown
in Figure 9b. The detection rate decreases with an increasing IoU threshold, and the false-
alarm rate increases with increasing IoU threshold. It is interesting to note that the trend of
the effect of the IoU threshold on the detection rate for different confidence scores is very
similar, while it is different for the false-alarm rate. The change in the IoU threshold at a
detection box confidence threshold of 10% has little effect on the false-alarm rate, while at
a detection box confidence threshold greater than 20%, the change in the IoU threshold has
a greater effect on the false-alarm rate.

An enlarged view of the curves of the single-image detection rate and false-alarm rate
is shown in Figure 9c. In practice, we need to select the appropriate confidence threshold
and IoU threshold according to the task requirements. For example, the false-alarm rate
of detection in a security check is strictly required to be less than 15%. According to
Figure 9c, there are only the bottom two IoU threshold curves to choose from. Among the
candidate IoUs, the one with the highest IoU is generally chosen to ensure the accuracy
of detection. The figure shows that the curve of IoU 0.2 is the best. After selecting the
IoU threshold, it is necessary to select the confidence threshold on that threshold curve.
The confidence threshold on the current curve that matches the highest detection rate and
lowest false-alarm rate is SCO 0.5.
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Therefore, in this terahertz dataset, the best thresholds are NMS 0.1, SCO 0.5, and
IoU 0.2.

(a) (b)

(c)

Figure 9. (a) is the curves of detection rate and false-alarm rate with confidence threshold for NMS
threshold of 0.1. (b) is the curves of detection rate and false-alarm rate with IoU threshold for NMS
threshold of 0.1. The corresponding curve colors for different confidence levels are shown in the
legend on the right. (c) is an enlarged view of the lower-right area of Figure 8a.

5.5. Discussion

Unlike the original single-target detection method [12,13] applied to terahertz images,
which can only detect a single target, our method is also suitable for situations where there
are multiple objects to be detected. Similar to M. Kowalski’s experiments [14,15], our ex-
periments demonstrate that RetinaNet has better detection results than YOLOv3, YOLOv4,
and FRCN-OHEM. We extend RetinaNet to better detect small targets by embedding
low-level features.

Because the number of negative samples in the training dataset is usually much
larger than the number of positive samples, there is an imbalance problem in target
detection. Aiming at solving the problem of unbalanced training samples, because the
OHEM method [10] cannot be directly applied to one-stage target detectors, we proposed a
new Hard Example Mining (HEM) approach for the multi-object detection. Our proposed
HEM approach was successfully applied to the RetinaNet network and improved the
detection rate. Through the above experiments, we demonstrate the role of hard example
mining in the multi-object detection of terahertz images. In addition, the analysis of object
positions in terahertz imaging shows that the position of hidden objects has a significant
impact on the detection rate. Therefore, the use of multi-view detection is required in
practical applications. We compare in detail the parameters that affect the image detection
metrics and give a method for selecting the best threshold value. By discussing the various
thresholds and the choice of parameters, the model can achieve the best detection results.

Missing and wrong detection of dangerous goods bring serious harm to social security.
The improvement of detection accuracy is of great significance in practical applications.

6. Conclusions

In this paper, an active terahertz imaging dataset for multi-object detection is provided.
We hope it provides the opportunity to bridge the fields of computer vision and photoelec-
tric imaging. We design an image-based hard example mining scheme based on RetinaNet,
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and the experimental results show that this method can improve the detection performance
of the model for hard examples. We compare the three parameters that affect detection
metrics of a single image in detail and give the method of selecting the best threshold.
Our proposed dataset enables more researchers to focus on the detection of targets in
terahertz images and promote the development of the field of photoelectric imaging. Our
hard example mining method applied to RetinaNet has good detection results on terahertz
images, which would also play an important role in practical security scenarios. Due to the
limited number of images in the dataset, the final detection rate of our method needs to
be further improved, especially for small-target detection in the image. Our future work
will focus on exploring the detection methods of small objects on this active terahertz
images dataset.
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